×ðÁú¿­Ê±

×ðÁú¿­Ê±

ÐÐÐdzÝÂÖ´«¶¯Îó²îµÄÕ¹ÍûÒªÁ죺½ÏÁ¿Ñо¿

2023-06-19 14:47:08 tailong

ÐÐÐdzÝÂÖ´«¶¯Îó²îµÄÕ¹ÍûÒªÁ죺½ÏÁ¿Ñо¿


ÁýͳµÄ£º

ÐÐÐdzÝÂÖϵͳÓÉÓÚÆä¸ß¹¦ÂÊÃܶȺͽô´ÕµÄÉè¼Æ¶øÆÕ±éÓÃÓÚÖÖÖÖ¹¤ÒµÓ¦Óà ¡£ È»¶ø £¬ÐÐÐdzÝÂÖϵͳÖеijÝÂÖ´«¶¯Îó²î»á¶ÔϵͳÐÔÄܱ¬·¢µ¹ÔËÓ°Ïì £¬°üÀ¨ÔöÌíÔëÒô¡¢Õñ¶¯ºÍ½µµÍЧÂÊ ¡£ Òò´Ë £¬×¼È·Õ¹Íû³ÝÂÖ´«¶¯Îó²î¹ØÓÚÓÅ»¯ÐÐÐdzÝÂÖϵͳµÄÉè¼ÆºÍÔËÐÐÖÁ¹ØÖ÷Òª ¡£ ±¾ÎĶÔÐÐÐdzÝÂÖ´«¶¯Îó²îµÄÕ¹ÍûÒªÁì¾ÙÐÐÁ˽ÏÁ¿Ñо¿ £¬ÆÀ¹ÀÁËËüÃǵÄ׼ȷÐÔ¡¢ÅÌËãЧÂʺÍÏÖʵÊÊÓÃÐÔ ¡£ Ñо¿Ð§¹ûÖ¼ÔÚÖ¸µ¼¹¤³ÌʦѡÔñ×îÊʺÏÆäÌض¨ÒªÇóµÄÕ¹ÍûÒªÁì ¡£


ÏÈÈÝ

1.1 ÐÐÐdzÝÂÖ´«¶¯Îó²îÕ¹ÍûµÄÅä¾°¼°ÒâÒå

1.2 Ñо¿Ä¿µÄºÍ¹æÄ£


ÎÄÏ××ÛÊö

2.1 ÐÐÐdzÝÂÖϵͳ¼°Æä´«¶¯Îó²î¸ÅÊö

2.2 ÏÖÓÐÕ¹ÍûÒªÁì»ØÊ×

2.2.1 ÆÊÎöÒªÁì

2.2.2 ÓÐÏÞÔªÆÊÎö

2.2.3 ¶àÌ嶯Á¦Ñ§·ÂÕæ

2.2.4 Íø¸ñ¸Õ¶ÈÄ£×Ó

2.2.5 ʵÑéÒªÁì

2.3 Õ¹ÍûÒªÁì±ÈÕÕÆÊÎö


ÆÊÎöÒªÁì

3.1 ³ÝÂÖÄöºÏ¸Õ¶ÈÓë´«¶¯Îó²îÆÊÎöÄ£×Ó

3.2 ÆÊÎöÒªÁìµÄ¾ÖÏÞÐԺͼÙÉè

3.3 ÆÊÎöÕ¹ÍûÒªÁìµÄ°¸ÀýÑо¿ºÍÑéÖ¤


ÓÐÏÞÔªÆÊÎö (FEA)

4.1 ÐÐÐdzÝÂÖϵͳÓÐÏÞÔªÆÊÎö¸ÅÊö

4.2 ½¨Ä£ÊÖÒÕºÍ×¢ÖØÊÂÏî

4.3 FEA Õ¹ÍûµÄÑéÖ¤ºÍÑéÖ¤

4.4 FEA µÄÅÌËãЧÂʺ;ÖÏÞÐÔ


¶àÌ嶯Á¦Ñ§·ÂÕæ

5.1 ¶àÌ嶯Á¦Ñ§·ÂÕæÏÈÈÝ

5.2 ÔÚ¶àÌå·ÂÕæÈí¼þÖжÔÐÐÐdzÝÂÖϵͳ½¨Ä£

5.3 ʹÓöàÌ嶯Á¦Ñ§·ÂÕæÕ¹Íû³ÝÂÖ´«¶¯Îó²î

5.4 ·ÂÕæЧ¹ûÓëʵÑéÊý¾Ý±ÈÕÕÆÊÎö


Íø¸ñ¸Õ¶ÈÄ£×Ó

6.1 ÐÐÐdzÝÂÖϵͳÄöºÏ¸Õ¶ÈÄ£×Ó¸ÅÊö

6.2 Íø¸ñ¸Õ¶ÈµÄÅÌËãÓëʵÏÖ

6.3 ͨ¹ýÓëʵÑéÊý¾Ý½ÏÁ¿ÆÀ¹ÀÍø¸ñ¸Õ¶ÈÄ£×Ó


ʵÑéÒªÁì

7.1 ³ÝÂÖ´«¶¯Îó²îÕÉÁ¿ÊµÑéÊÖÒÕ¸ÅÊö

7.2 ÕÉÁ¿ÉèÖúÍÊý¾ÝÊÕÂÞ

7.3 Êý¾ÝÆÊÎöÓëÎó²îÕ¹Íû

7.4 ʵÑéÒªÁìµÄ¾ÖÏÞÐÔºÍ×¢ÖØÊÂÏî


½ÏÁ¿ÆÊÎöÓëÌÖÂÛ

8.1 Õ¹ÍûÒªÁ쾫¶ÈÆÀ¹À

8.2 ÅÌËãЧÂʺÍÏÖʵÊÊÓÃÐÔ

8.3 ׼ȷÐÔºÍÅÌËãÖØƯºóÖ®¼äµÄȨºâ

8.4 ƾ֤ӦÓÃÐèÇóÑ¡ÔñÕ¹ÍûÒªÁìµÄ½¨Òé


½áÂÛ

9.1 ½ÏÁ¿Ñо¿Ð§¹û×ܽá

9.2 ÐÐÐdzÝÂÖ´«¶¯Îó²îÕ¹ÍûµÄÒªº¦¿´·¨

9.3 δÀ´µÄÑо¿Æ«ÏòºÍÕ¹ÍûÒªÁìµÄDZÔÚÏ£Íû


ͨ¹ý¶ÔÐÐÐdzÝÂÖ´«¶¯Îó²îµÄÖÖÖÖÕ¹ÍûÒªÁì¾ÙÐнÏÁ¿Ñо¿ £¬±¾ÎÄΪ¹¤³ÌʦºÍÑо¿Ö°Ô±ÌṩÁ˶ÔÿÖÖÒªÁìµÄÓÅÊƺ;ÖÏÞÐÔµÄÖÜÈ«ÆÊÎö ¡£ ÕâЩ·¢Ã÷ÓÐÖúÓÚƾ֤׼ȷÐÔ¡¢ÅÌËãЧÂʺÍÏÖʵÊÊÓÃÐÔÑ¡Ôñ×îºÏÊʵÄÕ¹ÍûÒªÁì £¬×îÖÕË¢ÐÂÐÐÐdzÝÂÖϵͳµÄÉè¼ÆºÍÐÔÄÜÓÅ»¯ ¡£


Ô­ÎÄ

Prediction Method of Planetary Gear Transmission Error: A Comparative Study


Abstract:

Planetary gear systems are widely used in various industrial applications due to their high power density and compact design. However, gear transmission errors in planetary gear systems can result in adverse effects on system performance, including increased noise, vibration, and reduced efficiency. Therefore, accurate prediction of gear transmission error is crucial for optimizing the design and operation of planetary gear systems. This paper presents a comparative study of prediction methods for planetary gear transmission error, evaluating their accuracy, computational efficiency, and practical applicability. The findings aim to guide engineers in selecting the most suitable prediction method for their specific requirements.


Introduction

1.1 Background and significance of planetary gear transmission error prediction

1.2 Research objectives and scope


Literature Review

2.1 Overview of planetary gear systems and their transmission errors

2.2 Review of existing prediction methods

2.2.1 Analytical methods

2.2.2 Finite element analysis

2.2.3 Multibody dynamics simulation

2.2.4 Mesh stiffness models

2.2.5 Experimental methods

2.3 Comparative analysis of prediction methods


Analytical Methods

3.1 Analytical models for gear mesh stiffness and transmission error

3.2 Limitations and assumptions of analytical methods

3.3 Case studies and validation of analytical prediction methods


Finite Element Analysis (FEA)

4.1 Overview of FEA for planetary gear systems

4.2 Modeling techniques and considerations

4.3 Verification and validation of FEA predictions

4.4 Computational efficiency and limitations of FEA


Multibody Dynamics Simulation

5.1 Introduction to multibody dynamics simulation

5.2 Modeling planetary gear systems in multibody simulation software

5.3 Prediction of gear transmission error using multibody dynamics simulation

5.4 Comparative analysis of simulation results with experimental data


Mesh Stiffness Models

6.1 Overview of mesh stiffness models for planetary gear systems

6.2 Calculation and implementation of mesh stiffness

6.3 Evaluation of mesh stiffness models through comparison with experimental data


Experimental Methods

7.1 Overview of experimental techniques for measuring gear transmission error

7.2 Measurement setup and data acquisition

7.3 Data analysis and error prediction

7.4 Limitations and considerations of experimental methods


Comparative Analysis and Discussion

8.1 Accuracy assessment of prediction methods

8.2 Computational efficiency and practical applicability

8.3 Trade-offs between accuracy and computational complexity

8.4 Recommendations for selecting prediction methods based on application requirements


Conclusion

9.1 Summary of comparative study findings

9.2 Key insights into the prediction of planetary gear transmission error

9.3 Future research directions and potential advancements in prediction methods


By conducting a comparative study of various prediction methods for planetary gear transmission error, this paper provides engineers and researchers with a comprehensive analysis of the strengths and limitations of each approach. The findings help in selecting the most suitable prediction method based on accuracy, computational efficiency, and practical applicability, ultimately leading to improved design and performance optimization of planetary gear systems.


Ô­´´×¨ÒµÎÄÕ £¬ÒýÓá¢×ªÔØÇë֪ͨ×÷Õßtailongguoji@gmail.com £¬ÇÖȨ±Ø¾¿£¡

΢ÐÅ×Éѯ
¹Ù·½Æì½¢µê
ÍøÕ¾µØͼÍøÕ¾µØͼ